login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of continued fraction convergents to sqrt(483).
2

%I #16 Sep 28 2023 12:43:20

%S 21,22,945,967,41559,42526,1827651,1870177,80375085,82245262,

%T 3534676089,3616921351,155445372831,159062294182,6836061728475,

%U 6995124022657,300631270680069,307626394702726,13220939848194561

%N Numerators of continued fraction convergents to sqrt(483).

%H Vincenzo Librandi, <a href="/A041922/b041922.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,44,0,-1).

%F G.f.: -(x^3-21*x^2-22*x-21)/(x^4-44*x^2+1). - _Vincenzo Librandi_, Nov 12 2013

%F a(n) = 44*a(n-2)-a(n-4). - _Vincenzo Librandi_, Nov 12 2013

%t Numerator[Convergents[Sqrt[483], 30]] (* or *) CoefficientList[Series[-(x^3 - 21 x^2 - 22 x - 21)/(x^4 - 44 x^2 + 1), {x, 0, 30}], x] (* _Vincenzo Librandi_, Nov 12 2013 *)

%t LinearRecurrence[{0,44,0,-1},{21,22,945,967},20] (* _Harvey P. Dale_, Sep 28 2023 *)

%o (Magma) I:=[21, 22, 945, 967]; [n le 4 select I[n] else 44*Self(n-2)-Self(n-4): n in [1..25]]; // _Vincenzo Librandi_, Nov 12 2013

%Y Cf. A041923.

%K nonn,cofr,frac,easy,less

%O 0,1

%A _N. J. A. Sloane_.