login
Numerators of continued fraction convergents to sqrt(468).
2

%I #14 Jun 13 2015 00:49:37

%S 21,22,43,65,173,238,411,649,27669,28318,55987,84305,224597,308902,

%T 533499,842401,35914341,36756742,72671083,109427825,291526733,

%U 400954558,692481291,1093435849,46616786949,47710222798,94327009747,142037232545,378401474837

%N Numerators of continued fraction convergents to sqrt(468).

%H Vincenzo Librandi, <a href="/A041892/b041892.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,1298,0,0,0,0,0,0,0,-1).

%F G.f.: -(x^15 -21*x^14 +22*x^13 -43*x^12 +65*x^11 -173*x^10 +238*x^9 -411*x^8 -649*x^7 -411*x^6 -238*x^5 -173*x^4 -65*x^3 -43*x^2 -22*x -21) / ((x^8 -36*x^4 -1)*(x^8 +36*x^4 -1)). - _Colin Barker_, Nov 26 2013

%t Numerator[Convergents[Sqrt[468], 30]] (* _Vincenzo Librandi_, Nov 11 2013 *)

%Y Cf. A041893, A040446.

%K nonn,cofr,frac,easy,less

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 26 2013