login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A041839 Denominators of continued fraction convergents to sqrt(440). 2
1, 1, 41, 42, 1721, 1763, 72241, 74004, 3032401, 3106405, 127288601, 130395006, 5343088841, 5473483847, 224282442721, 229755926568, 9414519505441, 9644275432009, 395185536785801, 404829812217810, 16588378025498201, 16993207837716011 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 40 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 27 2014
LINKS
Eric W. Weisstein, MathWorld: Lehmer Number
FORMULA
G.f.: -(x^2-x-1) / (x^4-42*x^2+1). - Colin Barker, Nov 25 2013
a(n) = 42*a(n-2) - a(n-4) for n > 3. - Vincenzo Librandi, Dec 25 2013
From Peter Bala, May 27 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = sqrt(10) + sqrt(11) and beta = sqrt(10) - sqrt(11) be the roots of the equation x^2 - sqrt(40)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 40 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 40*a(2*n) + a(2*n - 1). (End)
MATHEMATICA
Denominator[Convergents[Sqrt[440], 20]] (* Harvey P. Dale, Feb 21 2013 *)
PROG
(Magma) I:=[1, 1, 41, 42]; [n le 4 select I[n] else 42*Self(n-2)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Dec 25 2013
CROSSREFS
Sequence in context: A339568 A077680 A283598 * A098064 A073921 A118124
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 25 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 02:40 EST 2023. Contains 367505 sequences. (Running on oeis4.)