

A041839


Denominators of continued fraction convergents to sqrt(440).


2



1, 1, 41, 42, 1721, 1763, 72241, 74004, 3032401, 3106405, 127288601, 130395006, 5343088841, 5473483847, 224282442721, 229755926568, 9414519505441, 9644275432009, 395185536785801, 404829812217810, 16588378025498201, 16993207837716011
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 40 and Q = 1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m).  Peter Bala, May 27 2014


LINKS



FORMULA

G.f.: (x^2x1) / (x^442*x^2+1).  Colin Barker, Nov 25 2013
The following remarks assume an offset of 1.
Let alpha = sqrt(10) + sqrt(11) and beta = sqrt(10)  sqrt(11) be the roots of the equation x^2  sqrt(40)*x  1 = 0. Then a(n) = (alpha^n  beta^n)/(alpha  beta) for n odd, while a(n) = (alpha^n  beta^n)/(alpha^2  beta^2) for n even.
a(n) = Product_{k = 1..floor((n1)/2)} ( 40 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n  1) + a(2*n  2) and a(2*n + 1) = 40*a(2*n) + a(2*n  1). (End)


MATHEMATICA

Denominator[Convergents[Sqrt[440], 20]] (* Harvey P. Dale, Feb 21 2013 *)


PROG

(Magma) I:=[1, 1, 41, 42]; [n le 4 select I[n] else 42*Self(n2)Self(n4): n in [1..50]]; // Vincenzo Librandi, Dec 25 2013


CROSSREFS



KEYWORD

nonn,frac,easy


AUTHOR



EXTENSIONS



STATUS

approved



