login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of continued fraction convergents to sqrt(428).
2

%I #14 Sep 08 2022 08:44:54

%S 1,1,3,13,16,93,946,4823,5769,27899,61567,89466,3640207,3729673,

%T 11099553,48127885,59227438,344265075,3501878188,17853656015,

%U 21355534203,103275792827,227907119857,331182912684,13475223627217,13806406539901,41088036707019

%N Denominators of continued fraction convergents to sqrt(428).

%H Vincenzo Librandi, <a href="/A041815/b041815.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3701774, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^22 -x^21 +3*x^20 -13*x^19 +16*x^18 -93*x^17 +946*x^16 -4823*x^15 +5769*x^14 -27899*x^13 +61567*x^12 -89466*x^11 -61567*x^10 -27899*x^9 -5769*x^8 -4823*x^7 -946*x^6 -93*x^5 -16*x^4 -13*x^3 -3*x^2 -x -1)/(x^24 -3701774*x^12 +1). - _Vincenzo Librandi_, Dec 25 2013

%F a(n) = 3701774*a(n-12) - a(n-24) for n>23. - _Vincenzo Librandi_, Dec 25 2013

%t Denominator[Convergents[Sqrt[428], 30]] (* or *) CoefficientList[Series[-(x^22 - x^21 + 3 x^20 - 13 x^19 + 16 x^18 - 93 x^17 + 946 x^16 - 4823 x^15 + 5769 x^14 - 27899 x^13 + 61567 x^12 - 89466 x^11 - 61567 x^10 - 27899 x^9 - 5769 x^8 - 4823 x^7 - 946 x^6 - 93 x^5 - 16 x^4 - 13 x^3 - 3 x^2 - x - 1)/(x^24 - 3701774 x^12 + 1), {x, 0, 30}], x] (* _Vincenzo Librandi_, Dec 25 2013 *)

%o (Magma) I:=[1,1,3,13,16,93,946,4823,5769,27899,61567, 89466,3640207,3729673,11099553,48127885,59227438, 344265075,3501878188,17853656015,21355534203, 103275792827,227907119857,331182912684]; [n le 24 select I[n] else 3701774*Self(n-12)-Self(n-24): n in [1..50]]; // _Vincenzo Librandi_, Dec 25 2013

%Y Cf. A041814.

%K nonn,frac,easy

%O 0,3

%A _N. J. A. Sloane_.

%E More terms from _Vincenzo Librandi_, Dec 25 2013