login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of continued fraction convergents to sqrt(375).
2

%I #16 Mar 18 2017 12:44:41

%S 19,39,58,155,213,1220,1433,4086,5519,15124,580231,1175586,1755817,

%T 4687220,6443037,36902405,43345442,123593289,166938731,457470751,

%U 17550827269,35559125289,53109952558,141779030405,194888982963,1116223945220,1311112928183

%N Numerators of continued fraction convergents to sqrt(375).

%H Vincenzo Librandi, <a href="/A041710/b041710.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 30248, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^19 -19*x^18 +39*x^17 -58*x^16 +155*x^15 -213*x^14 +1220*x^13 -1433*x^12 +4086*x^11 -5519*x^10 -15124*x^9 -5519*x^8 -4086*x^7 -1433*x^6 -1220*x^5 -213*x^4 -155*x^3 -58*x^2 -39*x -19) / ((x^4 -8*x^2 +1)*(x^16 +8*x^14 +63*x^12 +496*x^10 +3905*x^8 +496*x^6 +63*x^4 +8*x^2 +1)). - _Colin Barker_, Nov 11 2013

%t Numerator[Convergents[Sqrt[375], 30]] (* _Vincenzo Librandi_, Nov 07 2013 *)

%Y Cf. A041711.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 11 2013