login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A041703 Denominators of continued fraction convergents to sqrt(371). 2
1, 3, 4, 19, 23, 88, 3367, 10189, 13556, 64413, 77969, 298320, 11414129, 34540707, 45954836, 218360051, 264314887, 1011304712, 38693893943, 117092986541, 155786880484, 740240508477, 896027388961, 3428322675360, 131172289052641, 396945189833283 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,3390,0,0,0,0,0,-1).

FORMULA

G.f.: -(x^10-3*x^9+4*x^8-19*x^7+23*x^6-88*x^5-23*x^4-19*x^3-4*x^2-3*x-1) / (x^12-3390*x^6+1). - Colin Barker, Nov 22 2013

a(n) = 3390*a(n-6) - a(n-12) for n>11. - Vincenzo Librandi, Dec 23 2013

MATHEMATICA

Denominator[Convergents[Sqrt[371], 30]] (* Vincenzo Librandi, Dec 23 2013 *)

PROG

(Magma) I:=[1, 3, 4, 19, 23, 88, 3367, 10189, 13556, 64413, 77969, 298320]; [n le 12 select I[n] else 3390*Self(n-6)-Self(n-12): n in [1..40]]; // Vincenzo Librandi, Dec 23 2013

CROSSREFS

Cf. A041702, A040351.

Sequence in context: A143150 A100340 A042175 * A036253 A212113 A196133

Adjacent sequences: A041700 A041701 A041702 * A041704 A041705 A041706

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Colin Barker, Nov 22 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 07:01 EST 2022. Contains 358422 sequences. (Running on oeis4.)