login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041697
Denominators of continued fraction convergents to sqrt(368).
2
1, 5, 11, 60, 2291, 11515, 25321, 138120, 5273881, 26507525, 58288931, 317952180, 12140471771, 61020311035, 134181093841, 731925780240, 27947360742961, 140468729495045, 308884819733051, 1684892828160300, 64334812289824451, 323358954277282555
OFFSET
0,2
FORMULA
G.f.: -(x^2-5*x-1)*(x^4+12*x^2+1) / ((x^4-48*x^2+1)*(x^4+48*x^2+1)). - Colin Barker, Nov 22 2013
a(n) = 2302*a(n-4) - a(n-8) for n>7. - Vincenzo Librandi, Dec 23 2013
MATHEMATICA
Denominator[Convergents[Sqrt[368], 30]] (* Vincenzo Librandi, Dec 23 2013 *)
LinearRecurrence[{0, 0, 0, 2302, 0, 0, 0, -1}, {1, 5, 11, 60, 2291, 11515, 25321, 138120}, 30] (* Harvey P. Dale, Nov 21 2015 *)
PROG
(Magma) I:=[1, 5, 11, 60, 2291, 11515, 25321, 138120]; [n le 8 select I[n] else 2302*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 23 2013
CROSSREFS
Sequence in context: A173875 A095150 A215759 * A121170 A239322 A101209
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 22 2013
STATUS
approved