login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041693
Denominators of continued fraction convergents to sqrt(366).
2
1, 7, 8, 15, 23, 61, 755, 1571, 2326, 3897, 6223, 47458, 1809627, 12714847, 14524474, 27239321, 41763795, 110766911, 1370966727, 2852700365, 4223667092, 7076367457, 11300034549, 86176609300, 3286011187949, 23088254924943, 26374266112892, 49462521037835
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1815850, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^22 -7*x^21 +8*x^20 -15*x^19 +23*x^18 -61*x^17 +755*x^16 -1571*x^15 +2326*x^14 -3897*x^13 +6223*x^12 -47458*x^11 -6223*x^10 -3897*x^9 -2326*x^8 -1571*x^7 -755*x^6 -61*x^5 -23*x^4 -15*x^3 -8*x^2 -7*x-1)/(x^24 -1815850*x^12 +1). - Vincenzo Librandi, Dec 23 2013
a(n) = 1815850*a(n-12) - a(n-24) for n>23. - Vincenzo Librandi, Dec 23 2013
MATHEMATICA
Denominator[Convergents[Sqrt[366], 30]] (* or *) CoefficientList[Series[-(x^22 - 7 x^21 + 8 x^20 - 15 x^19 + 23 x^18 - 61 x^17 + 755 x^16 - 1571 x^15 + 2326 x^14 - 3897 x^13 + 6223 x^12 - 47458 x^11 - 6223 x^10 - 3897 x^9 - 2326 x^8 - 1571 x^7 - 755 x^6 - 61 x^5 - 23 x^4 - 15 x^3 - 8 x^2 - 7 x - 1)/(x^24 - 1815850 x^12 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 23 2013 *)
PROG
(Magma) I:=[1, 7, 8, 15, 23, 61, 755, 1571, 2326, 3897, 6223, 47458, 1809627, 12714847, 14524474, 27239321, 41763795, 110766911, 1370966727, 2852700365, 4223667092, 7076367457, 11300034549, 86176609300]; [n le 24 select I[n] else 1815850*Self(n-12)-Self(n-24): n in [1..40]]; // Vincenzo Librandi, Dec 23 2013
CROSSREFS
Cf. A041692.
Sequence in context: A022097 A041100 A129658 * A042001 A020690 A191413
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Dec 23 2013
STATUS
approved