login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of continued fraction convergents to sqrt(363).
2

%I #14 Sep 08 2020 18:45:09

%S 19,362,13775,262087,9973081,189750626,7220496869,137379191137,

%T 5227629760075,99462344632562,3784796725797431,72010600134783751,

%U 2740187601847579969,52135575035238803162,1983892038940922100125,37746084314912758705537,1436335096005625752910531

%N Numerators of continued fraction convergents to sqrt(363).

%H Vincenzo Librandi, <a href="/A041686/b041686.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,724,0,-1).

%F G.f.: -(x^3-19*x^2-362*x-19) / (x^4-724*x^2+1). - _Colin Barker_, Nov 09 2013

%t Numerator[Convergents[Sqrt[363], 30]] (* _Vincenzo Librandi_, Nov 06 2013 *)

%t LinearRecurrence[{0,724,0,-1},{19,362,13775,262087},20] (* _Harvey P. Dale_, Sep 08 2020 *)

%Y Cf. A041687.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 09 2013