%I #27 Dec 26 2023 07:03:05
%S 19,723,27493,1045457,39754859,1511730099,57485498621,2185960677697,
%T 83123991251107,3160897628219763,120197233863602101,
%U 4570655784445099601,173805117042777386939,6609165103409985803283,251322079046622237911693,9556848168875055026447617
%N Numerators of continued fraction convergents to sqrt(362).
%H Vincenzo Librandi, <a href="/A041684/b041684.txt">Table of n, a(n) for n = 0..200</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (38,1).
%F From _Philippe Deléham_, Nov 23 2008: (Start)
%F a(n) = 38*a(n-1) + a(n-2), n > 1; a(0)=19, a(1)=723.
%F G.f.: (19+x)/(1-38*x-x^2). (End)
%t Numerator[Convergents[Sqrt[362], 30]] (* _Vincenzo Librandi_, Nov 06 2013 *)
%t LinearRecurrence[{38,1},{19,723},20] (* _Harvey P. Dale_, Feb 10 2019 *)
%Y Cf. A041685.
%K nonn,cofr,frac,easy
%O 0,1
%A _N. J. A. Sloane_
%E Additional term from _Colin Barker_, Nov 09 2013