login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041458
Numerators of continued fraction convergents to sqrt(245).
2
15, 16, 31, 47, 360, 2207, 15809, 18016, 33825, 51841, 1589055, 1640896, 3229951, 4870847, 37325880, 228826127, 1639108769, 1867934896, 3507043665, 5374978561, 164756400495, 170131379056, 334887779551, 505019158607, 3870021889800, 23725150497407
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,103682,0,0,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^19 -15*x^18 +16*x^17 -31*x^16 +47*x^15 -360*x^14 +2207*x^13 -15809*x^12 +18016*x^11 -33825*x^10 -51841*x^9 -33825*x^8 -18016*x^7 -15809*x^6 -2207*x^5 -360*x^4 -47*x^3 -31*x^2 -16*x -15) / ((x^10 -322*x^5 +1)*(x^10 +322*x^5 +1)). - Colin Barker, Nov 18 2013
a(n) = 103682*a(n-10)-a(n-20). - Wesley Ivan Hurt, May 07 2021
MATHEMATICA
Convergents[Sqrt[245], 30]//Numerator (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 103682, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, {15, 16, 31, 47, 360, 2207, 15809, 18016, 33825, 51841, 1589055, 1640896, 3229951, 4870847, 37325880, 228826127, 1639108769, 1867934896, 3507043665, 5374978561}, 30] (* Harvey P. Dale, Jun 15 2023 *)
CROSSREFS
Sequence in context: A037971 A022105 A041456 * A041454 A041452 A041450
KEYWORD
nonn,cofr,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 18 2013
STATUS
approved