login
Numerators of continued fraction convergents to sqrt(237).
2

%I #16 Mar 18 2017 12:29:40

%S 15,31,46,77,585,5927,42074,48001,90075,228151,6934605,14097361,

%T 21031966,35129327,266937255,2704501877,19198450394,21902952271,

%U 41101402665,104105757601,3164274130695,6432654018991,9596928149686,16029582168677,121804003330425

%N Numerators of continued fraction convergents to sqrt(237).

%H Vincenzo Librandi, <a href="/A041442/b041442.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 456302, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^19 -15*x^18 +31*x^17 -46*x^16 +77*x^15 -585*x^14 +5927*x^13 -42074*x^12 +48001*x^11 -90075*x^10 -228151*x^9 -90075*x^8 -48001*x^7 -42074*x^6 -5927*x^5 -585*x^4 -77*x^3 -46*x^2 -31*x -15) / (x^20 -456302*x^10 +1). - _Colin Barker_, Nov 17 2013

%t Numerator[Convergents[Sqrt[237], 30]] (* _Vincenzo Librandi_, Nov 02 2013 *)

%Y Cf. A041443, A040221.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 17 2013