login
Numerators of continued fraction convergents to sqrt(234).
2

%I #12 Jun 13 2015 00:49:24

%S 15,46,107,153,413,566,1545,5201,157575,477926,1113427,1591353,

%T 4296133,5887486,16071105,54100801,1639095135,4971386206,11581867547,

%U 16553253753,44688375053,61241628806,167171632665,562756526801,17049867436695,51712358836886

%N Numerators of continued fraction convergents to sqrt(234).

%H Vincenzo Librandi, <a href="/A041436/b041436.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,10402,0,0,0,0,0,0,0,-1).

%F G.f.: -(x^15 -15*x^14 +46*x^13 -107*x^12 +153*x^11 -413*x^10 +566*x^9 -1545*x^8 -5201*x^7 -1545*x^6 -566*x^5 -413*x^4 -153*x^3 -107*x^2 -46*x -15) / ((x^4 -10*x^2 -1)*(x^4 +10*x^2 -1)*(x^8 +102*x^4 +1)). - _Colin Barker_, Nov 17 2013

%t Numerator[Convergents[Sqrt[234], 30]] (* _Vincenzo Librandi_, Nov 01 2013 *)

%Y Cf. A041437, A040218.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 17 2013