Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Jan 05 2025 19:51:35
%S 1,30,901,27060,812701,24408090,733055401,22016070120,661215159001,
%T 19858470840150,596415340363501,17912318681745180,537965975792718901,
%U 16156891592463312210,485244713749692085201,14573498304083225868240
%N Denominators of continued fraction convergents to sqrt(226).
%C From _Michael A. Allen_, May 16 2023: (Start)
%C Also called the 30-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
%C a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 30 kinds of squares available. (End)
%H Vincenzo Librandi, <a href="/A041421/b041421.txt">Table of n, a(n) for n = 0..200</a>
%H Michael A. Allen and Kenneth Edwards, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/60-5/allen.pdf">Fence tiling derived identities involving the metallonacci numbers squared or cubed</a>, Fib. Q. 60:5 (2022) 5-17.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (30,1).
%F a(n) = F(n, 30), the n-th Fibonacci polynomial evaluated at x=30. - _T. D. Noe_, Jan 19 2006
%F From _Philippe Deléham_, Nov 22 2008: (Start)
%F a(n) = 30*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=30.
%F G.f.: 1/(1-30*x-x^2). (End)
%t Denominator[Convergents[Sqrt[226], 30]] (* _Vincenzo Librandi_, Dec 17 2013 *)
%t LinearRecurrence[{30,1},{1,30},20] (* _Harvey P. Dale_, Jun 30 2022 *)
%Y Cf. A041420, A040210.
%Y Row n=30 of A073133, A172236 and A352361 and column k=30 of A157103.
%K nonn,frac,easy,changed
%O 0,2
%A _N. J. A. Sloane_
%E Additional term from _Colin Barker_, Nov 17 2013