%I #30 Sep 08 2022 08:44:54
%S 1,1,29,30,869,899,26041,26940,780361,807301,23384789,24192090,
%T 700763309,724955399,20999514481,21724469880,629284671121,
%U 651009141001,18857540619149,19508549760150,565096933903349,584605483663499,16934050476481321,17518655960144820
%N Denominators of continued fraction convergents to sqrt(224).
%C The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 28 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - _Peter Bala_, May 28 2014
%H Vincenzo Librandi, <a href="/A041419/b041419.txt">Table of n, a(n) for n = 0..200</a>
%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/LehmerNumber.html">MathWorld: Lehmer Number</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,30,0,-1).
%F G.f.: -(x^2-x-1) / (x^4-30*x^2+1). - _Colin Barker_, Nov 17 2013
%F a(n) = 30*a(n-2) - a(n-4) for n > 3. - _Vincenzo Librandi_, Dec 17 2013
%F From _Peter Bala_, May 28 2014: (Start)
%F The following remarks assume an offset of 1.
%F Let alpha = sqrt(7) + 2*sqrt(2) and beta = sqrt(7) - 2*sqrt(2) be the roots of the equation x^2 - sqrt(28)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
%F a(n) = Product_{k = 1..floor((n-1)/2)} ( 28 + 4*cos^2(k*Pi/n) ).
%F Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 28*a(2*n) + a(2*n - 1). (End)
%t Denominator[Convergents[Sqrt[224], 30]] (* _Harvey P. Dale_, May 07 2012 *)
%t CoefficientList[Series[(1 + x - x^2)/(x^4 - 30 x^2 + 1), {x, 0, 30}], x] (* _Vincenzo Librandi_, Dec 17 2013 *)
%o (Magma) I:=[1,1,29,30]; [n le 4 select I[n] else 30*Self(n-2)-Self(n-4): n in [1..100]]; // _Vincenzo Librandi_, Dec 17 2013
%Y Cf. A041418, A040209, A002530.
%K nonn,frac,easy
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _Colin Barker_, Nov 17 2013