login
Numerators of continued fraction convergents to sqrt(184).
2

%I #16 Jun 22 2022 11:30:06

%S 13,14,27,95,217,312,841,1153,3147,10594,13741,24335,646451,670786,

%T 1317237,4622497,10562231,15184728,40931687,56116415,153164517,

%U 515609966,668774483,1184384449,31462770157,32647154606,64109924763,224976928895,514063782553

%N Numerators of continued fraction convergents to sqrt(184).

%H Vincenzo Librandi, <a href="/A041340/b041340.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48670, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^23 -13*x^22 +14*x^21 -27*x^20 +95*x^19 -217*x^18 +312*x^17 -841*x^16 +1153*x^15 -3147*x^14 +10594*x^13 -13741*x^12 -24335*x^11 -13741*x^10 -10594*x^9 -3147*x^8 -1153*x^7 -841*x^6 -312*x^5 -217*x^4 -95*x^3 -27*x^2 -14*x -13) / (x^24 -48670*x^12 +1). - _Colin Barker_, Nov 15 2013

%F a(n) = 48670*a(n-12) - a(n-24). - _Wesley Ivan Hurt_, Jun 22 2022

%t Numerator[Convergents[Sqrt[184], 30]] (* _Vincenzo Librandi_, Nov 01 2013 *)

%Y Cf. A010226, A041341.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_

%E More terms from _Colin Barker_, Nov 15 2013