login
Numerators of continued fraction convergents to sqrt(177).
2

%I #15 Jun 13 2015 00:49:23

%S 13,40,133,306,2581,5468,18985,62423,1641983,4988372,16607099,

%T 38202570,322227659,682657888,2370201323,7793261857,204995009605,

%U 622778290672,2073329881621,4769438053914,40228834312933,85227106679780,295910154352273,972957569736599

%N Numerators of continued fraction convergents to sqrt(177).

%H Vincenzo Librandi, <a href="/A041326/b041326.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,124846,0,0,0,0,0,0,0,-1).

%F G.f.: -(x^15 -13*x^14 +40*x^13 -133*x^12 +306*x^11 -2581*x^10 +5468*x^9 -18985*x^8 -62423*x^7 -18985*x^6 -5468*x^5 -2581*x^4 -306*x^3 -133*x^2 -40*x -13) / (x^16 -124846*x^8 +1). - _Colin Barker_, Nov 10 2013

%t Numerator[Convergents[Sqrt[177], 30]] (* _Harvey P. Dale_, Sep 07 2011 *)

%Y Cf. A041327.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 10 2013