login
A041321
Denominators of continued fraction convergents to sqrt(174).
2
1, 5, 21, 110, 2881, 14515, 60941, 319220, 8360661, 42122525, 176850761, 926376330, 24262635341, 122239553035, 513220847481, 2688343790440, 70410159398921, 354739140785045, 1489366722539101, 7801572753480550, 204330258313033401, 1029452864318647555
OFFSET
0,2
FORMULA
G.f.: -(x^2-5*x-1)*(x^4+22*x^2+1) / (x^8-2902*x^4+1). - Colin Barker, Nov 15 2013
a(n) = 2902*a(n-4) - a(n-8). - Vincenzo Librandi, Dec 15 2013
MATHEMATICA
Denominator[Convergents[Sqrt[174], 30]] (* Vincenzo Librandi, Dec 15 2013 *)
LinearRecurrence[{0, 0, 0, 2902, 0, 0, 0, -1}, {1, 5, 21, 110, 2881, 14515, 60941, 319220}, 30] (* Harvey P. Dale, Jun 21 2022 *)
PROG
(Magma) I:=[1, 5, 21, 110, 2881, 14515, 60941, 319220]; [n le 8 select I[n] else 2902*Self(n-4)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 15 2013
CROSSREFS
Sequence in context: A325157 A218299 A121881 * A082428 A015558 A168598
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 15 2013
STATUS
approved