login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041235
Denominators of continued fraction convergents to sqrt(129).
2
1, 2, 3, 11, 14, 95, 109, 422, 531, 1484, 33179, 67842, 101021, 370905, 471926, 3202461, 3674387, 14225622, 17900009, 50025640, 1118464089, 2286953818, 3405417907, 12503207539, 15908625446, 107954960215, 123863585661, 479545717198, 603409302859
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,33710,0,0,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^18 -2*x^17 +3*x^16 -11*x^15 +14*x^14 -95*x^13 +109*x^12 -422*x^11 +531*x^10 -1484*x^9 -531*x^8 -422*x^7 -109*x^6 -95*x^5 -14*x^4 -11*x^3 -3*x^2 -2*x -1) / (x^20 -33710*x^10 +1). - Colin Barker, Nov 14 2013
a(n) = 33710*a(n-10) - a(n-20). - Vincenzo Librandi, Dec 13 2013
MATHEMATICA
Denominator[Convergents[Sqrt[129], 30]] (* Vincenzo Librandi, Dec 13 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 33710, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, {1, 2, 3, 11, 14, 95, 109, 422, 531, 1484, 33179, 67842, 101021, 370905, 471926, 3202461, 3674387, 14225622, 17900009, 50025640}, 30] (* Harvey P. Dale, Nov 05 2020 *)
PROG
(Magma) I:=[1, 2, 3, 11, 14, 95, 109, 422, 531, 1484, 33179, 67842, 101021, 370905, 471926, 3202461, 3674387, 14225622, 17900009, 50025640]; [n le 20 select I[n] else 33710*Self(n-10)-Self(n-20): n in [1..40]]; // Vincenzo Librandi, Dec 13 2013
CROSSREFS
Sequence in context: A041029 A158353 A158355 * A036972 A041637 A042235
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 14 2013
STATUS
approved