This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A041228 Numerators of continued fraction convergents to sqrt(126). 2
 11, 45, 101, 449, 9979, 40365, 90709, 403201, 8961131, 36247725, 81456581, 362074049, 8047085659, 32550416685, 73147919029, 325142092801, 7226273960651, 29230237935405, 65686749831461, 291977237261249, 6489185969578939, 26248721115577005 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..150 Index entries for linear recurrences with constant coefficients, signature (0,0,0,898,0,0,0,-1). FORMULA G.f.: (11 +45*x +101*x^2 +449*x^3 +101*x^4 -45*x^5 +11*x^6 -x^7) / ((1 -30*x^2 +x^4)*(1 +30*x^2 +x^4)). [Bruno Berselli, Oct 31 2013] MATHEMATICA Numerator[Convergents[Sqrt[126], 30]] (* Vincenzo Librandi, Oct 31 2013 *) LinearRecurrence[{0, 0, 0, 898, 0, 0, 0, -1}, {11, 45, 101, 449, 9979, 40365, 90709, 403201}, 30] (* Bruno Berselli, Oct 31 2013 *) PROG (MAGMA) m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((11+45*x+101*x^2+449*x^3+101*x^4-45*x^5+11*x^6-x^7)/((1-30*x^2+x^4)*(1+30*x^2+x^4)))); // Bruno Berselli, Oct 31 2013 CROSSREFS Cf. A041229. Sequence in context: A068596 A002089 A042521 * A022280 A154106 A232613 Adjacent sequences:  A041225 A041226 A041227 * A041229 A041230 A041231 KEYWORD nonn,cofr,frac,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 20:00 EST 2019. Contains 330000 sequences. (Running on oeis4.)