login
Numerators of continued fraction convergents to sqrt(73).
2

%I #17 Jul 12 2023 11:34:49

%S 8,9,17,94,487,581,1068,17669,18737,36406,200767,1040241,1241008,

%T 2281249,37740992,40022241,77763233,428838406,2221955263,2650793669,

%U 4872748932,80614776581,85487525513,166102302094,915999035983,4746097482009,5662096517992

%N Numerators of continued fraction convergents to sqrt(73).

%H Vincenzo Librandi, <a href="/A041128/b041128.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,2136,0,0,0,0,0,0,1).

%F G.f.: -(x^13 -8*x^12 +9*x^11 -17*x^10 +94*x^9 -487*x^8 +581*x^7 +1068*x^6 +581*x^5 +487*x^4 +94*x^3 +17*x^2 +9*x +8) / (x^14 +2136*x^7 -1). - _Colin Barker_, Nov 08 2013

%t Numerator[Convergents[Sqrt[73], 30]] (* _Vincenzo Librandi_, Oct 29 2013 *)

%t LinearRecurrence[{0,0,0,0,0,0,2136,0,0,0,0,0,0,1},{8,9,17,94,487,581,1068,17669,18737,36406,200767,1040241,1241008,2281249},30] (* _Harvey P. Dale_, Jul 12 2023 *)

%Y Cf. A010525, A041129.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 08 2013