login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041121
Denominators of continued fraction convergents to sqrt(69).
2
1, 3, 10, 13, 62, 75, 287, 936, 15263, 46725, 155438, 202163, 964090, 1166253, 4462849, 14554800, 237339649, 726573747, 2417060890, 3143634637, 14991599438, 18135234075, 69397301663, 226327139064, 3690631526687, 11298221719125, 37585296684062, 48883518403187
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,15550,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: -(x^14 -3*x^13 +10*x^12 -13*x^11 +62*x^10 -75*x^9 +287*x^8 -936*x^7 -287*x^6 -75*x^5 -62*x^4 -13*x^3 -10*x^2 -3*x -1) / (x^16 -15550*x^8 +1). - Colin Barker, Nov 13 2013
a(n) = 15550*a(n-8) - a(n-16). - Vincenzo Librandi, Dec 11 2013
MATHEMATICA
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[69], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
Denominator[Convergents[Sqrt[69], 30]] (* Vincenzo Librandi, Dec 11 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 15550, 0, 0, 0, 0, 0, 0, 0, -1}, {1, 3, 10, 13, 62, 75, 287, 936, 15263, 46725, 155438, 202163, 964090, 1166253, 4462849, 14554800}, 30] (* Harvey P. Dale, Oct 18 2015 *)
PROG
(Magma) I:=[1, 3, 10, 13, 62, 75, 287, 936, 15263, 46725, 155438, 202163, 964090, 1166253, 4462849, 14554800]; [n le 16 select I[n] else 15550*Self(n-8)-Self(n-16): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
CROSSREFS
KEYWORD
nonn,cofr,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 13 2013
STATUS
approved