login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of continued fraction convergents to sqrt(58).
2

%I #22 Sep 04 2015 04:00:47

%S 7,8,15,23,38,61,99,1447,1546,2993,4539,7532,12071,19603,286513,

%T 306116,592629,898745,1491374,2390119,3881493,56731021,60612514,

%U 117343535,177956049,295299584,473255633,768555217,11233028671,12001583888,23234612559,35236196447

%N Numerators of continued fraction convergents to sqrt(58).

%H Vincenzo Librandi, <a href="/A041100/b041100.txt">Table of n, a(n) for n = 0..200</a>

%H Kristina Lund, Steven Schlicker and Patrick Sigmon, <a href="http://dx.doi.org/10.2140/involve.2008.1.197">Fibonacci sequences and the space of compact sets</a>, Involve, 1:2 (2008), pp. 159-165.

%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,198,0,0,0,0,0,0,1).

%F G.f.: -(x^13 -7*x^12 +8*x^11 -15*x^10 +23*x^9 -38*x^8 +61*x^7 +99*x^6 +61*x^5 +38*x^4 +23*x^3 +15*x^2 +8*x +7) / (x^14 +198*x^7 -1). - _Colin Barker_, Nov 08 2013

%p cf:=numtheory:-cfrac(sqrt(58),100):

%p seq(numtheory:-nthnumer(cf,n),n=0..100); # _Robert Israel_, Sep 02 2015

%t Numerator[Convergents[Sqrt[58], 30]] (* _Vincenzo Librandi_, Oct 29 2013 *)

%Y Cf. A041101, A010511.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 08 2013