login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of continued fraction convergents to sqrt(57).
2

%I #17 Jul 22 2016 11:01:06

%S 7,8,15,68,83,151,2197,2348,4545,20528,25073,45601,663487,709088,

%T 1372575,6199388,7571963,13771351,200370877,214142228,414513105,

%U 1872194648,2286707753,4158902401,60511341367

%N Numerators of continued fraction convergents to sqrt(57).

%H Vincenzo Librandi, <a href="/A041098/b041098.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,302,0,0,0,0,0,-1).

%F a(n) = 302*a(n-6)-a(n-12). G.f.: -(x^11-7*x^10+8*x^9-15*x^8+68*x^7-83*x^6-151*x^5-83*x^4-68*x^3-15*x^2-8*x-7)/(x^12-302*x^6+1). [_Colin Barker_, Jul 18 2012]

%t Numerator[Convergents[Sqrt[57], 30]] (* _Vincenzo Librandi_, Oct 25 2013 *)

%t LinearRecurrence[{0,0,0,0,0,302,0,0,0,0,0,-1},{7,8,15,68,83,151,2197,2348,4545,20528,25073,45601},30] (* _Harvey P. Dale_, Jul 22 2016 *)

%Y Cf. A010510, A041099.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.