login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of continued fraction convergents to sqrt(29).
11

%I #29 Jun 10 2021 11:36:59

%S 5,11,16,27,70,727,1524,2251,3775,9801,101785,213371,315156,528527,

%T 1372210,14250627,29873464,44124091,73997555,192119201,1995189565,

%U 4182498331,6177687896,10360186227,26898060350

%N Numerators of continued fraction convergents to sqrt(29).

%C From _Johannes W. Meijer_, Jun 12 2010: (Start)

%C The terms of this sequence can be constructed with the terms of sequence A087130.

%C For the terms of the periodical sequence of the continued fraction for sqrt(29) see A010128. We observe that its period is five. The decimal expansion of sqrt(29) is A010484. (End)

%H Vincenzo Librandi, <a href="/A041046/b041046.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,140,0,0,0,0,1).

%F a(5*n) = A087130(3*n+1), a(5*n+1) = (A087130(3*n+2) - A087130(3*n+1))/2, a(5*n+2) = ( A087130(3*n+2) + A087130(3*n+1))/2, a(5*n+3) = A087130(3*n+2) and a(5*n+4) = A087130(3*n+3)/2. - _Johannes W. Meijer_, Jun 12 2010

%F G.f.: (5 + 11*x + 16*x^2 + 27*x^3 + 70*x^4 + 27*x^5 - 16*x^6 + 11*x^7 - 5*x^8 + x^9)/(1 - 140*x^5 - x^10) - _Peter J. C. Moses_, Jul 29 2013

%t Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[29],n]]],{n,1,50}] (* _Vladimir Joseph Stephan Orlovsky_, Mar 18 2011 *)

%t Numerator[Convergents[Sqrt[29], 30]] (* _Vincenzo Librandi_, Oct 28 2013 *)

%t LinearRecurrence[ {0,0,0,0,140,0,0,0,0,1},{5,11,16,27,70,727,1524,2251,3775,9801},30] (* _Harvey P. Dale_, Jun 10 2021 *)

%Y Cf. A041047, A041018, A041046, A041090, A041150, A041226, A041318, A041426, A041550, A010484.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_.