OFFSET
0,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (0,14,0,-1).
FORMULA
G.f.: (3+7*x+3*x^2-x^3)/(1-14*x^2+x^4).
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = (-((7-4*sqrt(3))^n*(3+2*sqrt(3)))+(-3+2*sqrt(3))*(7+4*sqrt(3))^n)/2.
a1(n) = ((7-4*sqrt(3))^n+(7+4*sqrt(3))^n)/2. (End)
MATHEMATICA
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[12], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*)
Numerator[Convergents[Sqrt[12], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
a0[n_] := (-((7-4*Sqrt[3])^n*(3+2*Sqrt[3]))+(-3+2*Sqrt[3])*(7+4*Sqrt[3])^n)/2 //Simplify
a1[n_] := ((7-4*Sqrt[3])^n+(7+4*Sqrt[3])^n)/2 // Simplify
Flatten[MapIndexed[{a0[#], a1[#]} &, Range[20]]] (* Gerry Martens, Jul 11 2015 *)
LinearRecurrence[{0, 14, 0, -1}, {3, 7, 45, 97}, 30] (* Harvey P. Dale, Jun 02 2016 *)
CROSSREFS
KEYWORD
nonn,cofr,frac,easy
AUTHOR
STATUS
approved