|
|
A041016
|
|
Numerators of continued fraction convergents to sqrt(12).
|
|
6
|
|
|
3, 7, 45, 97, 627, 1351, 8733, 18817, 121635, 262087, 1694157, 3650401, 23596563, 50843527, 328657725, 708158977, 4577611587, 9863382151, 63757904493, 137379191137, 888033051315, 1913445293767, 12368704813917
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (3+7*x+3*x^2-x^3)/(1-14*x^2+x^4).
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = (-((7-4*sqrt(3))^n*(3+2*sqrt(3)))+(-3+2*sqrt(3))*(7+4*sqrt(3))^n)/2.
a1(n) = ((7-4*sqrt(3))^n+(7+4*sqrt(3))^n)/2. (End)
|
|
MATHEMATICA
|
a0[n_] := (-((7-4*Sqrt[3])^n*(3+2*Sqrt[3]))+(-3+2*Sqrt[3])*(7+4*Sqrt[3])^n)/2 //Simplify
a1[n_] := ((7-4*Sqrt[3])^n+(7+4*Sqrt[3])^n)/2 // Simplify
Flatten[MapIndexed[{a0[#], a1[#]} &, Range[20]]] (* Gerry Martens, Jul 11 2015 *)
LinearRecurrence[{0, 14, 0, -1}, {3, 7, 45, 97}, 30] (* Harvey P. Dale, Jun 02 2016 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,cofr,frac,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|