login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041016
Numerators of continued fraction convergents to sqrt(12).
7
3, 7, 45, 97, 627, 1351, 8733, 18817, 121635, 262087, 1694157, 3650401, 23596563, 50843527, 328657725, 708158977, 4577611587, 9863382151, 63757904493, 137379191137, 888033051315, 1913445293767, 12368704813917
OFFSET
0,1
FORMULA
G.f.: (3+7*x+3*x^2-x^3)/(1-14*x^2+x^4).
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = (-((7-4*sqrt(3))^n*(3+2*sqrt(3)))+(-3+2*sqrt(3))*(7+4*sqrt(3))^n)/2.
a1(n) = ((7-4*sqrt(3))^n+(7+4*sqrt(3))^n)/2. (End)
MATHEMATICA
Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[12], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011*)
Numerator[Convergents[Sqrt[12], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
a0[n_] := (-((7-4*Sqrt[3])^n*(3+2*Sqrt[3]))+(-3+2*Sqrt[3])*(7+4*Sqrt[3])^n)/2 //Simplify
a1[n_] := ((7-4*Sqrt[3])^n+(7+4*Sqrt[3])^n)/2 // Simplify
Flatten[MapIndexed[{a0[#], a1[#]} &, Range[20]]] (* Gerry Martens, Jul 11 2015 *)
LinearRecurrence[{0, 14, 0, -1}, {3, 7, 45, 97}, 30] (* Harvey P. Dale, Jun 02 2016 *)
CROSSREFS
Sequence in context: A267844 A359046 A041349 * A351354 A365572 A301324
KEYWORD
nonn,cofr,frac,easy
STATUS
approved