login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of continued fraction convergents to sqrt(7).
7

%I #30 Feb 05 2022 16:08:01

%S 1,1,2,3,14,17,31,48,223,271,494,765,3554,4319,7873,12192,56641,68833,

%T 125474,194307,902702,1097009,1999711,3096720,14386591,17483311,

%U 31869902,49353213,229282754,278635967

%N Denominators of continued fraction convergents to sqrt(7).

%C Sqrt(7) = 2 + 9/14 + 9/(14*223) + 9/(223*3554) + 9/(3554*56641) + ...; sum of these 5 terms = 2.64575131088, with sqrt(7) = 2.64575131106... The terms 14, 223, 3554, ... = a(4), a(8), a(12), ... - _Gary W. Adamson_, Dec 27 2007

%H Vincenzo Librandi, <a href="/A041009/b041009.txt">Table of n, a(n) for n = 0..1000</a>

%H C. Elsner, M. Stein, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Elsner2/elsner10.html">On Error Sum Functions Formed by Convergents of Real Numbers</a>, J. Int. Seq. 14 (2011) # 11.8.6

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,16,0,0,0,-1).

%F G.f.: (1+x+2*x^2+3*x^3-2*x^4+x^5-x^6)/(1-16*x^4+x^8). - _Colin Barker_, Mar 13 2012

%t Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[7],n]]],{n,1,50}] (* _Vladimir Joseph Stephan Orlovsky_, Mar 16 2011*)

%t Denominator[Convergents[Sqrt[7],30]] (* or *) LinearRecurrence[ {0,0,0,16,0,0,0,-1},{1,1,2,3,14,17,31,48},30] (* _Harvey P. Dale_, Dec 17 2019 *)

%Y Cf. A010465, A041008.

%K nonn,cofr,frac,easy

%O 0,3

%A _N. J. A. Sloane_