Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Aug 18 2024 13:54:32
%S 25,1,1,1,6,1,1,1,50,1,1,1,6,1,1,1,50,1,1,1,6,1,1,1,50,1,1,1,6,1,1,1,
%T 50,1,1,1,6,1,1,1,50,1,1,1,6,1,1,1,50,1,1,1,6,1,1,1,50,1,1,1,6,1,1,1,
%U 50,1,1,1,6,1,1,1,50,1,1,1,6,1,1,1,50,1,1,1,6,1,1,1
%N Continued fraction for sqrt(658).
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,1).
%F From _Amiram Eldar_, Jan 03 2024: (Start)
%F Multiplicative with a(2) = 1, a(4) = 6, a(2^e) = 50 for e >= 3, and a(p^e) = 1 for an odd prime p.
%F Dirichlet g.f.: zeta(s) * (1 + 5/2^(2*s) + 11/2^(3*s-2)). (End)
%p with(numtheory): Digits := 300: convert(evalf(sqrt(658)),confrac);
%t ContinuedFraction[Sqrt[658], 100] (* _Amiram Eldar_, Jan 03 2024 *)
%t PadRight[{25},120,{50,1,1,1,6,1,1,1}] (* _Harvey P. Dale_, Aug 18 2024 *)
%K nonn,cofr,easy,mult,less
%O 0,1
%A _N. J. A. Sloane_