login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A040452 Continued fraction for sqrt(474). 0
21, 1, 3, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 1, 42, 1, 3, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 1, 42, 1, 3, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 1, 42, 1, 3, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 1, 42, 1, 3, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 1, 42, 1, 3, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 1, 42, 1, 3, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..89.

Index entries for continued fractions for constants

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

FORMULA

a(n)=(1/1274)*{-3665*(n mod 14)+248*[(n+1) mod 14]-25*[(n+2) mod 14]-25*[(n+3) mod 14]+66*[(n+4) mod 14]+66*[(n+5) mod 14]+521*[(n+6) mod 14]-389*[(n+7) mod 14]+66*[(n+8) mod 14]+66*[(n+9) mod 14]+157*[(n+10) mod 14]+157*[(n+11) mod 14]-116*[(n+12) mod 14]+3797*[(n+13) mod 14]}-21*[C(2*n,n) mod 2], with n>=0 [From Paolo P. Lava, May 13 2009]

MAPLE

with(numtheory): Digits := 300: convert(evalf(sqrt(474)), confrac);

CROSSREFS

Sequence in context: A040449 A040448 A040453 * A102524 A040454 A040455

Adjacent sequences:  A040449 A040450 A040451 * A040453 A040454 A040455

KEYWORD

nonn,cofr,easy,less

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 13:47 EST 2021. Contains 349420 sequences. (Running on oeis4.)