|
|
A040385
|
|
Continued fraction for sqrt(406).
|
|
0
|
|
|
20, 6, 1, 2, 4, 7, 1, 4, 1, 7, 4, 2, 1, 6, 40, 6, 1, 2, 4, 7, 1, 4, 1, 7, 4, 2, 1, 6, 40, 6, 1, 2, 4, 7, 1, 4, 1, 7, 4, 2, 1, 6, 40, 6, 1, 2, 4, 7, 1, 4, 1, 7, 4, 2, 1, 6, 40, 6, 1, 2, 4, 7, 1, 4, 1, 7, 4, 2, 1, 6, 40, 6, 1, 2, 4, 7, 1, 4, 1, 7, 4, 2, 1, 6, 40, 6, 1, 2, 4, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Table of n, a(n) for n=0..89.
Index entries for continued fractions for constants
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
|
|
FORMULA
|
a(n)=(1/1274)*{-1208*(n mod 14)-389*[(n+1) mod 14]+157*[(n+2) mod 14]+248*[(n+3) mod 14]+339*[(n+4) mod 14]-480*[(n+5) mod 14]+339*[(n+6) mod 14]-207*[(n+7) mod 14]+612*[(n+8) mod 14]-207*[(n+9) mod 14]-116*[(n+10) mod 14]-25*[(n+11) mod 14]+521*[(n+12) mod 14]+1340*[(n+13) mod 14]}-20*[C(2*n,n) mod 2], with n>=0 [From Paolo P. Lava, Apr 30 2009]
|
|
MAPLE
|
with(numtheory): Digits := 300: convert(evalf(sqrt(406)), confrac);
|
|
CROSSREFS
|
Sequence in context: A233820 A040387 A201137 * A161997 A274458 A327131
Adjacent sequences: A040382 A040383 A040384 * A040386 A040387 A040388
|
|
KEYWORD
|
nonn,cofr,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|