Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Oct 02 2024 08:35:01
%S 7,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,
%T 1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,
%U 1,2,1,14,1,2,1,14,1,2,1,14
%N Continued fraction for sqrt(60).
%H Harry J. Smith, <a href="/A040052/b040052.txt">Table of n, a(n) for n = 0..20000</a>
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>.
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1).
%F From _Bruno Berselli_, Mar 07 2011: (Start)
%F G.f.: (7 + x + 2*x^2 + x^3 + 7*x^4)/(1-x^4).
%F a(n) = (6*(-i)^n + 6*i^n + 7*(-1)^n + 9)/2 - 7*A000007(n), where i is the imaginary unit. (End)
%F From _Amiram Eldar_, Nov 13 2023: (Start)
%F Multiplicative with a(2) = 2, a(2^e) = 14 for e >= 2, and a(p^e) = 1 for an odd prime p.
%F Dirichlet g.f.: zeta(s) * (1 + 1/2^s + 3/4^(s-1)). (End)
%e 7.74596669241483377035853079... = 7 + 1/(1 + 1/(2 + 1/(1 + 1/(14 + ...)))). - _Harry J. Smith_, Jun 07 2009
%p Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
%t ContinuedFraction[Sqrt[60],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 07 2011 *)
%t PadRight[{7},120,{14,1,2,1}] (* _Harvey P. Dale_, Aug 07 2019 *)
%o (PARI) { allocatemem(932245000); default(realprecision, 19000); x=contfrac(sqrt(60)); for (n=0, 20000, write("b040052.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 07 2009
%o (Magma) [7] cat &cat[ [1, 2, 1, 14]: n in [1..18]]; // _Bruno Berselli_, Mar 07 2011
%Y Cf. A000007, A010513 (decimal expansion), A248285 (Egyptian fractions).
%K nonn,cofr,easy,mult
%O 0,1
%A _N. J. A. Sloane_