login
Number of types of maximal mixed orthogonal arrays with n runs.
2

%I #23 Mar 05 2020 03:17:47

%S 0,1,1,1,1,1,1,1,1,1,1,4,1,1,1,2,1,2,1,4,1,1,1

%N Number of types of maximal mixed orthogonal arrays with n runs.

%C Number of dual atoms in lattice of parameters of mixed orthogonal arrays with n runs and strength 2.

%C a(36) is the first unknown term.

%D A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Springer-Verlag, NY, 1999.

%H E. M. Rains, N. J. A. Sloane and J. Stufken, The Lattice of N-Run Orthogonal Arrays, J. Stat. Planning Inference, 102 (2002), 477-500 (<a href="http://neilsloane.com/doc/rao.txt">Abstract</a>, <a href="http://neilsloane.com/doc/rao.pdf">pdf</a>, <a href="http://neilsloane.com/doc/rao.ps">ps</a>).

%H Eric D. Schoen, Pieter T. Eendebak and Man V. M. Nguyen, <a href="https://doi.org/10.1002/jcd.20236">Complete enumeration of pure-level and mixed-level orthogonal arrays</a>, Journal of Combinatorial Designs, Volume 18, Issue 2, pages 123-140, March 2010; DOI: 10.1002/jcd.20236; <a href="https://doi.org/10.1002/jcd.20270">Correction</a>: Journal of Combinatorial Designs, Volume 18, Issue 6, page 488, November 2010; DOI: 10.1002/jcd.20270.

%Y Cf. A039930, A039931.

%K nonn,nice,more

%O 1,12

%A _N. J. A. Sloane_

%E Needs to be updated using the results of Schoen et al. (2010). - _N. J. A. Sloane_, Feb 21 2013