login
Number of partitions satisfying cn(2,5) + cn(3,5) <= cn(1,5) and cn(2,5) + cn(3,5) <= cn(4,5).
0

%I #6 Mar 30 2012 17:20:57

%S 1,1,1,2,3,4,5,7,9,12,15,22,28,34,42,54,73,93,110,135,168,220,271,325,

%T 391,480,602,735,876,1051,1267,1552,1864,2222,2642,3157,3783,4500,

%U 5334,6313,7460,8826,10394,12267,14415

%N Number of partitions satisfying cn(2,5) + cn(3,5) <= cn(1,5) and cn(2,5) + cn(3,5) <= cn(4,5).

%C For a given partition cn(i,n) means the number of its parts equal to i modulo n.

%C Short: 2 + 3 <= 1 and 2 + 3 <= 4 (BBpAA).

%K nonn

%O 1,4

%A _Olivier GĂ©rard_