login
Number of partitions satisfying cn(1,5) + cn(4,5) <= cn(2,5) and cn(1,5) + cn(4,5) <= cn(3,5).
0

%I #6 Mar 30 2012 17:20:57

%S 0,1,1,1,2,3,3,5,6,8,12,14,17,25,28,42,47,60,78,92,126,146,178,231,

%T 265,350,409,494,613,723,900,1072,1271,1547,1824,2216,2627,3107,3698,

%U 4377,5194,6164,7215,8501,10014

%N Number of partitions satisfying cn(1,5) + cn(4,5) <= cn(2,5) and cn(1,5) + cn(4,5) <= cn(3,5).

%C For a given partition cn(i,n) means the number of its parts equal to i modulo n.

%C Short: 1 + 4 <= 2 and 1 + 4 <= 3 (AApBB).

%K nonn

%O 1,5

%A _Olivier GĂ©rard_