login
Number of partitions satisfying cn(1,5) <= cn(0,5) + cn(2,5) + cn(3,5) and cn(4,5) <= cn(0,5) + cn(2,5) + cn(3,5).
0

%I #6 Mar 30 2012 17:20:56

%S 0,1,2,2,3,6,8,12,15,21,29,42,53,71,93,123,159,207,262,340,427,544,

%T 681,861,1074,1335,1655,2049,2521,3118,3794,4648,5655,6884,8358,10095,

%U 12170,14669,17617,21174,25274,30223,36009,42877,50975

%N Number of partitions satisfying cn(1,5) <= cn(0,5) + cn(2,5) + cn(3,5) and cn(4,5) <= cn(0,5) + cn(2,5) + cn(3,5).

%C For a given partition cn(i,n) means the number of its parts equal to i modulo n.

%C Short: 1 <= 0 + 2 + 3 and 4 <= 0 + 2 + 3 (AAZBBp).

%K nonn

%O 1,3

%A _Olivier GĂ©rard_