login
Number of partitions satisfying cn(2,5) + cn(3,5) <= cn(0,5) + cn(1,5) + cn(4,5).
0

%I #6 Mar 30 2012 17:20:56

%S 1,1,2,4,5,8,11,16,22,29,40,57,74,96,125,166,215,277,351,449,570,721,

%T 901,1131,1409,1750,2163,2671,3283,4034,4923,6003,7298,8862,10724,

%U 12949,15582,18737,22482,26931,32153,38344,45639,54260,64366

%N Number of partitions satisfying cn(2,5) + cn(3,5) <= cn(0,5) + cn(1,5) + cn(4,5).

%C For a given partition cn(i,n) means the number of its parts equal to i modulo n.

%C Short: 2 + 3 <= 0 + 1 + 4 (BBpZAAp).

%K nonn

%O 1,3

%A _Olivier GĂ©rard_