login
Number of partitions satisfying cn(1,5) + cn(4,5) <= cn(0,5) + cn(2,5) + cn(3,5).
0

%I #6 Mar 30 2012 17:20:56

%S 0,1,2,2,3,6,7,11,15,19,28,38,47,67,84,112,144,186,237,303,384,485,

%T 606,766,948,1181,1463,1804,2215,2731,3321,4066,4940,5991,7263,8766,

%U 10554,12711,15227,18264,21799,26028,30980,36826,43711

%N Number of partitions satisfying cn(1,5) + cn(4,5) <= cn(0,5) + cn(2,5) + cn(3,5).

%C For a given partition cn(i,n) means the number of its parts equal to i modulo n.

%C Short: 1 + 4 <= 0 + 2 + 3 (AApZBBp).

%K nonn

%O 1,3

%A _Olivier GĂ©rard_