login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest coefficient in expansion of Product (1+q^1+q^3...+q^(2i-1)), i=1 to n.
2

%I #9 Jan 05 2023 15:04:16

%S 1,2,4,13,57,315,2057,15484,132317,1261560,13281295,153218597,

%T 1921565205,26008169266,377922606876,5871153031163,97096594212804,

%U 1702487540383101,31551431772637772,616331122530164638

%N Largest coefficient in expansion of Product (1+q^1+q^3...+q^(2i-1)), i=1 to n.

%H Vaclav Kotesovec, <a href="/A039831/b039831.txt">Table of n, a(n) for n = 1..400</a>

%F Conjecture: a(n) ~ 3 * n^n / exp(n). - _Vaclav Kotesovec_, Jan 05 2023

%t Table[Max[CoefficientList[Expand[Product[1 + Sum[x^(2*k-1), {k, 1, j}], {j, 1, n}]], x]], {n,1,20}] (* _Vaclav Kotesovec_, Jan 05 2023 *)

%Y Cf. A039824.

%K nonn

%O 1,2

%A _Olivier Gérard_