login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Column 4 of inverse partition triangle A038498.
3

%I #23 Feb 27 2021 07:11:24

%S 1,-1,-1,0,0,2,1,1,0,-1,-1,-2,-3,-3,-2,-2,0,1,3,4,6,7,9,8,10,9,8,6,3,

%T -2,-5,-10,-16,-20,-27,-32,-37,-40,-44,-43,-47,-42,-42,-34,-30,-18,

%U -12,7,17,39,53,76,92,118,133,158,175,196,210,226,237,244

%N Column 4 of inverse partition triangle A038498.

%H David A. Corneth, <a href="/A039803/b039803.txt">Table of n, a(n) for n = 4..2003</a>

%o (PARI) first(n) = { my(m = matrix(n + 4, n + 4)); for(i = 2, n + 4, m[i, i] = 1; ); for(k = 2, n + 4, for(i = k + 1, n + 4, m[i, k] = m[i - (k-1), k] + m[i-1,k-1] ) ); m = matrix(n + 3, n + 3, i, j, m[i + 1, j + 1])^-1; vector(n, i, m[i + 3, 4]) } \\ _David A. Corneth_, Feb 27 2021

%Y Cf. A038498, A039800, A039801, A039802, A039804.

%K sign,look

%O 4,6

%A _Christian G. Bower_, Feb 15 1999

%E a(63) onward corrected by _Sean A. Irvine_, Feb 27 2021