login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of D-analogs of Stirling numbers of first kind.
1

%I #31 Jul 17 2023 01:18:29

%S 1,1,0,1,-2,1,1,-6,11,-6,1,-12,50,-84,45,1,-20,150,-520,809,-420,1,

%T -30,355,-2100,6439,-9390,4725,1,-42,721,-6510,33019,-92358,127539,

%U -62370,1,-56,1316,-16856,127694,-578984,1505524,-1984584,945945,1,-72,2220,-38304,405174,-2702448,11228300,-27491616,34812945,-16216200

%N Triangle of D-analogs of Stirling numbers of first kind.

%C |T(n,k)|, 0 <= k <= n, is the number of elements in the Coxeter group D_n with absolute length k. - _Jose Bastidas_, Jul 16 2023

%H Ruedi Suter, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/SUTER/sut1.html">Two analogues of a classical sequence</a>, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.

%F From _Petros Hadjicostas_, Jul 11 2020: (Start)

%F T(n,k) = A039762(n,n-k) for k = 0..n.

%F T(n,0) = 1 for n >= 0.

%F T(n,n) = (-1)^n*(n-1)*(2*n-3)!! for n >= 2.

%F T(n,k) = [x^(n-k)] (x - (n - 1)) * Product_{k=1..n-1} (x - (2*k - 1)) for n >= 1 and k = 0..n. (End)

%e Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:

%e 1;

%e 1, 0;

%e 1, -2, 1;

%e 1, -6, 11, -6;

%e 1, -12, 50, -84, 45;

%e 1, -20, 150, -520, 809, -420;

%e ...

%o (PARI) row(n) = if(n==0, [1], Vec(prod(i=1, n-1, x-2*i+1)*(x-n+1))); \\ _Petros Hadjicostas_, Jul 12 2020

%Y Cf. A039762 (transposed triangle).

%K tabl,sign

%O 0,5

%A Ruedi Suter (suter(AT)math.ethz.ch)

%E More terms from _Petros Hadjicostas_, Jul 12 2020