login
A039736
a(n) = number of primes q<p having (p mod q) = 2, where p = n-th prime.
1
0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 3, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 1, 2, 3, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 3, 2, 2, 3, 1, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 3, 1, 2, 2, 2, 3, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 1
OFFSET
1,7
COMMENTS
Number of distinct prime factors of prime(n) - 2.
LINKS
EXAMPLE
First prime is 2, p_1-2 = 0 which has no prime factors, 2nd is 3, 3-2 = 1 which also has no prime factors. p_6 is 17 and 15 has 2 distinct prime divisors. a(219) = A001221(Prime(219)-2) = A001221(1365) = A001221(3*5*7*13) = 4
MATHEMATICA
Table[Length[FactorInteger[Prime[n]-2]], {n, 1, 50}]
Join[{0}, Table[PrimeNu[Prime[n] - 2], {n, 2, 50}]] (* G. C. Greubel, May 19 2017 *)
PROG
(PARI) concat([0], for(n=2, 50, print1(omega(prime(n) - 2), ", "))) \\ G. C. Greubel, May 19 2017
CROSSREFS
Cf. A001221.
Sequence in context: A237442 A277070 A139355 * A093921 A353426 A140192
KEYWORD
nonn
EXTENSIONS
More terms from Labos Elemer
STATUS
approved