%I #26 May 08 2023 21:49:59
%S 1,1023,29524,698027,2441406,30203052,47079208,408345795,653757313,
%T 2497558338,2593742460,20608549148,11488207654,48162029784,
%U 72080070744,222984027123,125999618778,668793731199,340614792100,1704167305962,1389966536992,2653398536580,1883023236984
%N Number of sublattices of index n in generic 10-dimensional lattice.
%D Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.
%H Amiram Eldar, <a href="/A038997/b038997.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Su#sublatts">Index entries for sequences related to sublattices</a>.
%F f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=10.
%F Multiplicative with a(p^e) = Product_{k=1..9} (p^(e+k)-1)/(p^k-1).
%F Dirichlet g.f.: Product_{k=0..Q-1} zeta(s-k). - _R. J. Mathar_, Apr 01 2011
%F Sum_{k=1..n} a(k) ~ c * n^10, where c = Pi^30*zeta(3)*zeta(5)*zeta(7)*zeta(9) / 4511535509250000 = 0.229259... . - _Amiram Eldar_, Oct 19 2022
%t f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 9}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Aug 29 2019 *)
%Y Column 10 of A160870.
%Y Cf. A001001, A038991, A038992, A038993, A038994, A038995, A038996, A038998, A038999.
%K nonn,mult
%O 1,2
%A _N. J. A. Sloane_
%E Offset set to 1 by _R. J. Mathar_, Apr 01 2011
%E More terms from _Amiram Eldar_, Aug 29 2019