Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 13 2018 11:27:38
%S 1,2,5,14,41,118,341,986,2849,8234,23797,68774,198761,574430,1660133,
%T 4797874,13866113,40073810,115815461,334712894,967338217,2795659334,
%U 8079605429,23350493066,67484177441,195032892538,563655520661,1628994688214,4707882025385
%N Expansion of (1 - x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4).
%H Colin Barker, <a href="/A038989/b038989.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,2,-1).
%F a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4) for n>3. - _Colin Barker_, Jul 16 2017
%F Lim_{n -> inf} a(n)/a(n-1) = A318605. - _A.H.M. Smeets_, Sep 12 2018
%p seq(coeff(series((1-x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4),x,n+1), x, n), n = 0 .. 30); # _Muniru A Asiru_, Sep 12 2018
%o (PARI) Vec((1 - x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + O(x^30)) \\ _Colin Barker_, Jul 16 2017
%o (GAP) a:=[1,2,5,14];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3]-a[n-4]; od; a; # _Muniru A Asiru_, Sep 12 2018
%K nonn,easy
%O 0,2
%A _Colin Mallows_