Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:44:53
%S 125,215,335,485,665,875,1115,1385,1685,2015,2375,2765,3185,3635,4115,
%T 4625,5165,5735,6335,6965,7625,8315,9035,9785,10565,11375,12215,13085,
%U 13985,14915,15875,16865,17885,18935,20015,21125,22265,23435,24635,25865
%N (n+5)^3 - n^3.
%H Vincenzo Librandi, <a href="/A038867/b038867.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f. 5*(25-32*x+13*x^2) / (1-x)^3 . - R. J. Mathar, Apr 03 2012
%F a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - _Vincenzo Librandi_, Jul 07 2012
%t CoefficientList[Series[5*(25-32*x+13*x^2)/(1-x)^3,{x,0,50}],x] (* _Vincenzo Librandi_, Jul 07 2012 *)
%t LinearRecurrence[{3,-3,1},{125,215,335},40] (* _Harvey P. Dale_, Mar 30 2018 *)
%o (Magma) [((n+5)^3 - n^3): n in [0..50]]; // _Vincenzo Librandi_, Jul 07 2012
%o (PARI) a(n)=(n+5)^3-n^3 \\ _Charles R Greathouse IV_, Jun 17 2017
%K nonn,easy
%O 0,1
%A _Jeff Burch_
%E G.f.: adapted to the offset 0 and added 125 by _Vincenzo Librandi_, Jul 07 2012