login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangle T(n,k) (0 <= k <= n) giving number of chains of length k in partially ordered set formed from subsets of n-set by inclusion.
14

%I #75 Apr 29 2022 03:21:38

%S 1,2,1,4,5,2,8,19,18,6,16,65,110,84,24,32,211,570,750,480,120,64,665,

%T 2702,5460,5880,3240,720,128,2059,12138,35406,57120,52080,25200,5040,

%U 256,6305,52670,213444,484344,650160,514080,221760,40320,512,19171

%N Triangle T(n,k) (0 <= k <= n) giving number of chains of length k in partially ordered set formed from subsets of n-set by inclusion.

%C The relation of this triangle to A143494 given in the Formula section leads to the following combinatorial interpretation: T(n,k) gives the number of partitions of the set {1,2,...,n+2} into k + 2 blocks where 1 and 2 belong to two distinct blocks and the remaining k blocks are labeled from a fixed set of k labels. - _Peter Bala_, Jul 10 2014

%C Also, the number of distinct k-level fuzzy subsets of a set consisting of n elements ordered by set inclusion. - _Rajesh Kumar Mohapatra_, Mar 16 2020

%H Alois P. Heinz, <a href="/A038719/b038719.txt">Rows n = 0..140, flattened</a>

%H Peter Bala, <a href="/A131689/a131689.pdf">Deformations of the Hadamard product of power series</a>

%H L. Bartlomiejczyk and J. Drewniak, <a href="http://dx.doi.org/10.1007/s00010-004-2737-7">A characterization of sets and operations invariant under bijections</a>, Aequationes Mathematicae 68 (2004), pp. 1-9.

%H M. Dukes and C. D. White, <a href="http://arxiv.org/abs/1603.01589">Web Matrices: Structural Properties and Generating Combinatorial Identities</a>, arXiv:1603.01589 [math.CO], 2016.

%H Rajesh Kumar Mohapatra and Tzung-Pei Hong, <a href="https://doi.org/10.3390/math10071161">On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences</a>, Mathematics (2022) Vol. 10, No. 7, 1161.

%H R. B. Nelsen and H. Schmidt, Jr., <a href="http://www.jstor.org/stable/2690450">Chains in power sets</a>, Math. Mag., 64 (1991), 23-31.

%H <a href="/index/Pos#posets">Index entries for sequences related to posets</a>

%F T(n, k) = Sum_{j=0..k} (-1)^j*C(k, j)*(k+2-j)^n.

%F T(n+1, k) = k*T(n, k-1) + (k+2)*T(n, k), T(0,0) = 1, T(0,k) = 0 for k>0.

%F E.g.f.: exp(2*x)/(1+y*(1-exp(x))). - _Vladeta Jovovic_, Jul 21 2003

%F A038719 as a lower triangular matrix is the binomial transform of A028246. - _Gary W. Adamson_, May 15 2005

%F Binomial transform of n-th row = 2^n + 3^n + 4^n + ...; e.g., binomial transform of [8, 19, 18, 6] = 2^3 + 3^3 + 4^3 + 5^3 + ... = 8, 27, 64, 125, ... - _Gary W. Adamson_, May 15 2005

%F From _Peter Bala_, Jul 09 2014: (Start)

%F T(n,k) = k!*( Stirling2(n+2,k+2) - Stirling2(n+1,k+2) ).

%F T(n,k) = k!*A143494(n+2,k+2).

%F n-th row polynomial = 1/(1 + x)*( sum {k >= 0} (k + 2)^n*(x/(1 + x))^k ). Cf. A028246. (End)

%F The row polynomials have the form (2 + x) o (2 + x) o ... o (2 + x), where o denotes the black diamond multiplication operator of Dukes and White. See example E12 in the Bala link. - _Peter Bala_, Jan 18 2018

%F Z(P,m) = Sum_{k=0..n} T(n,k)Binomial(m-2,k) = m^n, the zeta polynomial of the poset B_n. Each length m multichain from 0 to 1 in B_n corresponds to a function from [n] into [m]. - _Geoffrey Critzer_, Dec 25 2020

%F The entries in row n are the first terms in a table of the successive differences of the sequence [2^n, 3^n, 4^n, ...]. Examples are given below. - _Peter Bala_, Feb 02 2022

%e Triangle begins

%e 1;

%e 2, 1;

%e 4, 5, 2;

%e 8, 19, 18, 6;

%e 16, 65, 110, 84, 24;

%e ...

%e From _Peter Bala_, Feb 02 2022: (Start)

%e Table of successive differences of k^2 starting at k = 2

%e 4 9 16

%e 5 7

%e 2

%e gives [4, 5, 2] as row 2 of this triangle.

%e Table of successive differences of k^3 starting at k = 2

%e 8 27 64 125

%e 19 37 61

%e 18 24

%e 6

%e gives [8, 19, 8, 6] as row 3 of this triangle. (End)

%p T:= proc(n, k) option remember;

%p `if` (n=0, `if`(k=0, 1, 0), k*T(n-1, k-1) +(k+2)*T(n-1, k))

%p end:

%p seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Aug 02 2011

%t t[n_, k_] := Sum[ (-1)^(k-i)*Binomial[k, i]*(2+i)^n, {i, 0, k}]; Flatten[ Table[ t[n, k], {n, 0, 9}, {k, 0, n}]] (* _Jean-François Alcover_, after Pari *)

%o (PARI) T(n,k)=sum(i=0,k,(-1)^(k-i)*binomial(k,i)*(2+i)^n)

%o (Haskell)

%o a038719 n k = a038719_tabl !! n !! k

%o a038719_row n = a038719_tabl !! n

%o a038719_tabl = iterate f [1] where

%o f row = zipWith (+) (zipWith (*) [0..] $ [0] ++ row)

%o (zipWith (*) [2..] $ row ++ [0])

%o -- _Reinhard Zumkeller_, Jul 08 2012

%Y Row sums give A007047. Columns give A000079, A001047, A038721. Next-to-last diagonal gives A038720.

%Y Diagonal gives A000142. - _Rajesh Kumar Mohapatra_, Mar 16 2020

%Y Cf. A028246. A019538, A143494.

%K nonn,easy,nice,tabl

%O 0,2

%A _N. J. A. Sloane_, May 02 2000

%E More terms from Larry Reeves (larryr(AT)acm.org), May 09 2000