Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Dec 16 2024 13:28:10
%S 1,1,1,0,1,1,2,1,2,2,0,1,1,3,3,4,6,3,3,3,0,1,1,4,6,8,13,12,10,12,6,4,
%T 4,0,1,1,5,10,15,25,31,30,35,30,20,20,10,5,5,0,1,1,6,15,26,45,66,76,
%U 90,96,80,75,60,35,30,15,6,6,0,1,1,7,21,42,77,126,168,211,252,252,245,231
%N Triangular array read by rows: T(n,m) = number of ways your team can score m points in n rounds of a soccer competition (loss=0 point, draw=1 point, win=3 points), for n >= 0, 0 <= m <= 3n.
%C n-th row has 3n+1 entries.
%H Steven R. Finch, P. Sebah and Z.-Q. Bai, <a href="http://arXiv.org/abs/0802.2654">Odd Entries in Pascal's Trinomial Triangle</a>, arXiv:0802.2654 [math.NT], 2008.
%H Szymon Lukaszyk, <a href="https://arxiv.org/abs/2007.03782">Four Cubes</a>, arXiv:2007.03782 [math.GM], 2020.
%F T(n, m) = T(n-1, m) + T(n-1, m-1) + T(n-1, m-3).
%F G.f.: Sum T(n, m)*z^n*w^m = 1/(1-z(1+w+w^3)). Hence m-th column is a polynomial in n of degree m given by C(n, m) + C(m-2, 1)*C(n, m-2) + C(m-4, 2)*C(n, m-4) + C(m-6, 3)*C(n, m-6) + ... E.g. column 5 is C(n, 5)+3C(n, 3). - _N. J. A. Sloane_, May 24 2005
%e Triangle begins:
%e 0...1...2...3...4...5...6...7...8...9..10..11..12 points
%e --------------------------------------------------------
%e 1
%e 1...1...0...1
%e 1...2...1...2...2...0...1
%e 1...3...3...4...6...3...3...3...0...1
%e 1...4...6...8..13..12..10..12...6...4...4...0...1
%t T[_, 0] = 1;
%t T[n_, m_] /; 0 <= m <= 3n = T[n, m] = T[n-1, m]+T[n-1, m-1]+T[n-1, m-3];
%t T[_, _] = 0;
%t Table[T[n, m], {n, 0, 7}, {m, 0, 3n}] // Flatten (* _Jean-François Alcover_, Sep 10 2018 *)
%K nonn,tabf
%O 0,7
%A _Floor van Lamoen_, May 02 2000