Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #71 Nov 16 2024 16:08:53
%S 0,1,0,1,2,1,0,1,2,1,2,1,0,1,2,1,2,1,2,3,2,3,4,3,2,1,2,3,2,1,2,3,2,3,
%T 2,3,2,3,4,3,4,3,4,3,2,3,4,5,6,5,4,5,4,5,4,5,4,5,4,3,4,3,4,5,4,3,4,3,
%U 4,3,2,3,4,3,4,5,4,3,2,1,2,1,2,1,2,3,2,1,0,1,2,3,4,5,6,7,6,5,6,5,6,5,6,5,6
%N Excess of 4k-1 primes over 4k+1 primes, beginning with prime 2.
%C a(n) < 0 for infinitely many values of n. - _Benoit Cloitre_, Jun 24 2002
%C First negative value is a(2946) = -1, which is for prime 26861. - _David W. Wilson_, Sep 27 2002
%D Stan Wagon, The Power of Visualization, Front Range Press, 1994, p. 2.
%H N. J. A. Sloane, <a href="/A038698/b038698.txt">Table of n, a(n) for n = 1..20000</a> (first 10000 terms from T. D. Noe)
%F a(n) = Sum_{k=2..n} (-1)^((prime(k)+1)/2). - _Benoit Cloitre_, Jun 24 2002
%F a(n) = (Sum_{k=1..n} prime(k) mod 4) - 2*n (assuming that x mod 4 > 0). - _Thomas Ordowski_, Sep 21 2012
%F From _Antti Karttunen_, Oct 01 2017: (Start)
%F a(n) = A267098(n) - A267097(n).
%F a(n) = A292378(A000040(n)).
%F (End)
%F From _Ridouane Oudra_, Nov 04 2024: (Start)
%F a(n) = Sum_{k=2..n} i^(prime(k)+1), where i is the imaginary unit.
%F a(n) = Sum_{k=2..n} sin(3*prime(k)*Pi/2).
%F a(n) = Sum_{k=2..n} A163805(prime(k)).
%F a(n) = Sum_{k=2..n} A212159(k). (End)
%p ans:=[0]; ct:=0; for n from 2 to 2000 do
%p p:=ithprime(n); if (p mod 4) = 3 then ct:=ct+1; else ct:=ct-1; fi;
%p ans:=[op(ans),ct]; od: ans; # _N. J. A. Sloane_, Jun 24 2016
%t FoldList[Plus, 0, Mod[Prime[Range[2,110]], 4] - 2]
%t Join[{0},Accumulate[If[Mod[#,4]==3,1,-1]&/@Prime[Range[2,110]]]] (* _Harvey P. Dale_, Apr 27 2013 *)
%o (PARI) for(n=2,100,print1(sum(i=2,n,(-1)^((prime(i)+1)/2)),","))
%Y Cf. A007350, A007351, A038691, A051024, A066520.
%Y Cf. A112632 (race of 3k-1 and 3k+1 primes), A216057, A269364.
%Y Cf. A156749 (sequence showing Chebyshev bias in prime races (mod 4)), A199547, A267097, A267098, A267107, A292378.
%Y Cf. A163805, A212159.
%K sign,easy,nice,hear
%O 1,5
%A _Hans Havermann_