login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes not containing the digit '9'.
14

%I #53 Aug 04 2023 18:59:12

%S 2,3,5,7,11,13,17,23,31,37,41,43,47,53,61,67,71,73,83,101,103,107,113,

%T 127,131,137,151,157,163,167,173,181,211,223,227,233,241,251,257,263,

%U 271,277,281,283,307,311,313,317,331,337,347,353,367,373,383,401,421

%N Primes not containing the digit '9'.

%C Subsequence of primes of A007095. - _Michel Marcus_, Feb 22 2015

%C Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - _Charles R Greathouse IV_, Apr 08 2016

%H Indranil Ghosh, <a href="/A038617/b038617.txt">Table of n, a(n) for n = 1..50000</a>

%H M. F. Hasler, <a href="/wiki/Numbers_avoiding_certain_digits">Numbers avoiding certain digits</a>, OEIS wiki, Jan 12 2020.

%H James Maynard, <a href="http://arxiv.org/abs/1604.01041">Primes with restricted digits</a>, arXiv:1604.01041 [math.NT], 2016.

%H James Maynard and Brady Haran, <a href="https://www.youtube.com/watch?v=eeoBCS7IEqs">Primes without a 7</a>, Numberphile video (2019).

%F a(n) ~ n^(log 10/log 9) log n. - _Charles R Greathouse IV_, Aug 03 2023

%t Select[Prime[Range[1000]], DigitCount[ # ][[9]] == 0 &] (* _Stefan Steinerberger_, May 20 2006 *)

%o (Magma) [ p: p in PrimesUpTo(500) | not 9 in Intseq(p) ]; // _Bruno Berselli_, Aug 08 2011

%o (PARI) lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), 9), print1(p, ", "));); \\ _Michel Marcus_, Feb 22 2015

%o (PARI) lista(nn) = forprime (p=2, nn, if (vecmax(digits(p)) != 9, print1(p, ", "))); \\ _Michel Marcus_, Apr 06 2016

%o (PARI) next_A038617(n)=until((n=nextprime(n+1))==(n=next_A007095(n-1)), ); n \\ _M. F. Hasler_, Jan 14 2020

%o (Python)

%o from sympy import isprime

%o i = 1

%o while i <= 300:

%o if "9" not in str(i) and isprime(i):

%o print(str(i), end=",")

%o i += 1 # _Indranil Ghosh_, Feb 07 2017

%Y Intersection of A000040 (primes) and A007095 (numbers with no digit 9).

%Y Primes having no digit d = 0..9 are A038618, A038603, A038604, A038611, A038612, A038613, A038614, A038615, A038616, and this sequence, respectively.

%Y Primes with other restrictions on digits: A106116, A156756.

%K nonn,easy,base

%O 1,1

%A Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998