Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 Aug 04 2023 18:59:31
%S 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,71,73,79,83,89,97,101,
%T 103,107,109,113,127,131,137,139,149,151,157,173,179,181,191,193,197,
%U 199,211,223,227,229,233,239,241,251,257,271,277,281,283,293,307,311
%N Primes not containing the digit '6'.
%C Subsequence of primes of A052414. - _Michel Marcus_, Feb 22 2015
%C Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - _Charles R Greathouse IV_, Apr 08 2016
%H Robert Israel, <a href="/A038614/b038614.txt">Table of n, a(n) for n = 1..10000</a>
%H M. F. Hasler, <a href="/wiki/Numbers_avoiding_certain_digits">Numbers avoiding certain digits</a> OEIS wiki, Jan 12 2020.
%H James Maynard, <a href="http://arxiv.org/abs/1604.01041">Primes with restricted digits</a>, arXiv:1604.01041 [math.NT], 2016.
%H James Maynard and Brady Haran, <a href="https://www.youtube.com/watch?v=eeoBCS7IEqs">Primes without a 7</a>, Numberphile video (2019).
%F Intersection of A000040 and A052414. - _M. F. Hasler_, Jan 12 2020
%F a(n) ~ n^(log 10/log 9) log n. - _Charles R Greathouse IV_, Aug 03 2023
%p no6:= proc(n) option remember;
%p n mod 10 <> 6 and procname(floor(n/10))
%p end proc:
%p no6(0):= true:
%p select(no6 and isprime, [2,seq(i,i=3..1000,2)]); # _Robert Israel_, Mar 16 2017
%t Select[Prime[Range[70]], DigitCount[#, 10, 6] == 0 &] (* _Vincenzo Librandi_, Aug 08 2011 *)
%o (Magma) [ p: p in PrimesUpTo(400) | not 6 in Intseq(p) ]; // _Bruno Berselli_, Aug 08 2011
%o (PARI) lista(nn)=forprime(p=2, nn, if (!vecsearch(vecsort(digits(p),,8), 6), print1(p, ", "));); \\ _Michel Marcus_, Feb 22 2015
%o (PARI)
%o select( {is_A038614(n)=is_A052414(n)&&isprime(n)}, [1..350]) \\ see A052414
%o (A038614_upto(n)=select( is_A038614, primes([1,n])))(350) \\ needs the above
%o next_A038614(n)={until(isprime(n), n=next_A052414(nextprime(n+1)-1));n}
%o (A038614_vec(n)=vector(n,i,n=next_A038614(if(i>1,n))))(66) \\ _M. F. Hasler_, Jan 12 2020
%Y Intersection of A000040 (primes) and A052414 (numbers with no digit 6).
%Y Primes having no digit d = 0..9 are A038618, A038603, A038604, A038611, A038612, A038613, this sequence, A038615, A038616, and A038617, respectively.
%K nonn,easy,base
%O 1,1
%A Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998
%E Offset corrected by _Arkadiusz Wesolowski_, Aug 07 2011