login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038392
Number of mono-4-polyhexes with n cells.
4
1, 1, 2, 6, 19, 71, 274, 1117, 4650, 19819, 85710, 375712, 1664203, 7439593, 33515758, 152019560, 693625265, 3181528275, 14661581030, 67850297506, 315187646601, 1469195636293, 6869889703638, 32215399021901, 151467334017864, 713881817440421, 3372142139764434
OFFSET
1,3
REFERENCES
J. Brunvoll, B. N. Cyvin, and S. J. Cyvin, Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298; see Eq. 16.
LINKS
S. J. Cyvin, Graph-theoretical studies on fluoranthenoids and fluorenoids. Part 1, Journal of Molecular Structure (Theochem), 262 (1992), 219-231.
N. Cyvin, E. Brendsdal, J. Brunvoll, S. J. Cyvin, A class of polygonal systems representing polycyclic conjugated hydrocarbons: Catacondensed monoheptafusenes, Monat. f. Chemie, 125 (1994), 1327-1337.
S. J. Cyvin, B. N. Cyvin, J. Brunvoll and E. Brendsdal, Enumeration and Classification of Certain Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons: Annelated Catafusenes, Journal of Chemical Information and Modeling [formerly, J. Chem. Inform. Comput. Sci.], 34 (1994), pp. 1174-1180.
S. J. Cyvin, B. N. Cyvin, J. Brunvoll, Zhang Fuji, Guo Xiaofeng, and R. Tosic, Graph-theoretical studies on fluoranthenoids and fluorenoids: enumeration of some catacondensed systems, Journal of Molecular Structures (Theochem), 285 (1993), 179-185.
F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
Eric Weisstein's World of Mathematics, Fusene.
FORMULA
G.f.: (2(1-z^2) - (1-z)f(z) - f(z^2))/(4(1-z)) where f(z) = sqrt(1-6z+5z^2). - Emeric Deutsch, Mar 14 2004
(250*n^2-250*n)*a(n)+(-300*n^2-150*n)*a(n+1)+(-325*n^2-875*n-600)*a(n+2)+(475*n^2+2045*n+2100)*a(n+3)+(35*n^2+265*n+540)*a(n+4)+(-193*n^2-1691*n-3660)*a(n+5)+(49*n^2+563*n+1596)*a(n+6)+(17*n^2+211*n+648)*a(n+7)+(-9*n^2-135*n-504)*a(n+8)+(n^2+17*n+72)*a(n+9) = 0. - Robert Israel, Oct 08 2017
MAPLE
f:= gfun:-rectoproc({(250*n^2-250*n)*a(n)+(-300*n^2-150*n)*a(n+1)+(-325*n^2-875*n-600)*a(n+2)+(475*n^2+2045*n+2100)*a(n+3)+(35*n^2+265*n+540)*a(n+4)+(-193*n^2-1691*n-3660)*a(n+5)+(49*n^2+563*n+1596)*a(n+6)+(17*n^2+211*n+648)*a(n+7)+(-9*n^2-135*n-504)*a(n+8)+(n^2+17*n+72)*a(n+9), a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2, a(4) = 6, a(5) = 19, a(6) = 71, a(7) = 274, a(8) = 1117}, a(n), remember):
map(f, [$1..50]); # Robert Israel, Oct 08 2017
MATHEMATICA
f[z_] := Sqrt[5*z^2 - 6*z + 1]; g[z_] := (2*(1 - z^2) - (1-z)*f[z] - f[z^2])/ (4*(1-z)); Drop[ CoefficientList[ Series[ g[z], {z, 0, 24}], z], 1] (* Jean-François Alcover, Oct 13 2011, after Emeric Deutsch *)
CROSSREFS
Apart from initial term, (A002212 + A007317)/2. See A044045 for another version.
Sequence in context: A177477 A150116 A150117 * A044045 A150118 A343417
KEYWORD
nonn,nice
EXTENSIONS
More terms from Emeric Deutsch, Mar 14 2004
STATUS
approved